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The stroke-averaged lift forces due to various vortex rings and their mutual
interactions are studied using a flapping flight vortex model (Rayner, J. Fluid Mech.,
vol. 91, 1979, p. 697; Ellington, Phil. Trans. R. Soc. Lond. B, vol. 305, 1984b, p. 115).
The vortex system is decomposed into the wing plane (wing-linked) vortex ring, a loop
closed by the bound vortex and (arc-shaped) trailing vortex and the wake (the vortex
rings shed previously). Using the vorticity moment theory (Wu, AIAA J., vol. 19, 1981,
p. 432) we are able to identify the roles of vortex rings in lift production or reduction
and express the lift as function of areal contraction or expansion of vortex rings.
The wake vortex rings induce areal contraction of the trailing vortex, which should
decrease the lift, but this decrease is exactly compensated by the inducing effect of
the trailing arc on the wake. The wake reduces the lift through inducing a downwash
velocity on the wing plane. The lift force is shown to drop to a minimum at the
second half stroke, and then increases to an asymptotic value slightly below the lift
at the first half stroke, in such a way following the experimental observation of Birch
& Dickinson (Nature, vol. 412, 2001, p. 729). The existence of the negative peak of
lift is due to the first shed vortex ring which, just at the second half stroke, lies in
the close vicinity to the wing plane, leading to a peak of the wing plane downwash
velocity.

1. Introduction
In addition to the conventional lift mechanism, insect flapping flight involves various

additional aerodynamic mechanisms such as Weis-Fogh mechanism by the ‘clap and
fling’ motion (Weis-Fogh 1973; Miller & Peskin 2005), wing rotation (Dickinson,
Lehmann & Sane 1999; Sane & Dickinson 2002; Bergou, Xu & Wang 2007), added
mass (Sane & Dickinson 2001), vortex effect (leading edge vortex, Ellington et al.
1996; Birch, Dickson & Dickinson 2004; Bomphrey et al. 2006) and wake vortices
(Ramamurti & Sandberg 2007; Lehmann 2008); see Maxworthy (1981), Sane (2003),
Lehmann (2004), Wang (2005) and Ansari, Zbikowski & Knowles (2006) for details
and for more references. Though the importance of wakes in altering the conventional
lift has been recognized (Rayner 1979; Ellington 1984b; Sane 2003), its specific role
on aerodynamic force has not been well studied. For instance, Lehmann (2008)
recently pointed out that the majority of studies on insect flight aerodynamics widely
ignored the significance of wake patterns produced by previous strokes. Fortunately,
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a number of experimental and numerical studied were conducted in recent years in
order to reveal the vortical structure and wake patterns in flapping flight (Bomphrey
et al. 2006; Ramamurti & Sandberg 2007; Aono, Liang & Liu 2008; Altshuler et al.
2009), which may help to improve understanding about the wake influence on the
aerodynamic performance.

Rayner (1979) and Ellington (1984b) modelled the wake of hovering insects as a
chain of coaxial horizontal circular vortex rings stacked one upon another. A vortex
ring is released to the wake after each half stroke and begin to move downwards in
the induced velocity field. This approach deals with the averaged aerodynamic force
in a stroke period.

Controversial perspectives have been proposed on the contribution of the wake
to the lift force. Dickinson et al. (1999) proposed that wake capture may enhance
lift. When the wings complete rotation and enter the wake created by the previous
strokes, a transient peak in the aerodynamic force is brought by the mutual interaction
between the wings and the wake. Force due to wake capture is sensitive to the details
of the wing kinematics. The diverse manners in which the wings enter the wake lead
to disparate consequences on aerodynamic forces. Dickinson et al. (1999) found in
model experiments that insects benefit from their shed vorticity which may explain
the large positive transient that develops immediately after the wings reverse direction
at the start of each half stroke in an advanced rotation case. The same geometry and
wing kinematics are adopted by Sun & Tang (2002) in their numerical simulations.
In contradiction to results by Dickinson and his colleagues, the computational results
have drawn to the conclusion that the peak in the lift force is due to wing acceleration.
The wake produced in previous strokes has an attenuating effect on the lift force
rather than an enhancing one. Birch & Dickinson (2001) have shown by experiments
that the first stroke in a fruit fly model wing produces approximately 9 % more
lift than the subsequent strokes where the effective angle of attack is attenuated
by more than 10o. Vortices play a negative role in this situation. Lehmann (2008)
has reviewed the wing wake interference and pointed out that the flow induced by
the preceding half strokes may lower the effective angle of attack but permits the
recycling of kinetic energy from the wake.

The lack of knowledge about the specific contribution of the wake on the
aerodynamics of insect flight seems to be due to the consideration of as many
phenomena as possible in each of the past studies. Hence, a study about the sole
influence of the wake seems to be necessary. In this paper, we will disregard the
various effects other than the vortex structure and use the flapping flight vortex
model by Rayner (1979) and Ellington (1984b) to study the role of various vortex
rings and their mutual interactions on the (stroke-averaged) lift. The vortex system
is composed of a wing-linked vortex ring and wakes (vortex rings shed during the
previous strokes). Using the vorticity moment theory by Wu (1981), we will be able to
identify the roles of various vortex rings and their mutual interactions. The vorticity
moment theory relates the aerodynamic forces to the moment of distributed or distinct
vortices. This allows us to express the aerodynamic force as function of strength and
areal contraction of vortex rings and study the relative contribution of wing-linked
vortex and wakes. The vortex model used in this paper will be presented in § 2.
In § 3, the vorticity moment theory will be applied to the vortex system. In § 4 the
contribution by the bound vortex, trailing vortex and wakes will be identified and
the time history of the lift will be studied. Concluding remarks for this paper and
perspective for future study such as unsteadiness in each stroke and body influence
will be stated in § 5.
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Figure 1. Diagrams of vortex structure for single (a) and multiple (b) chains of vortex rings.

2. Vortex rings in a flapping flight model
In this section, we first present the vortex model. Then we use the vortex method by

Rayner (1979) to display some features related to the vortex ring evolution useful for
aerodynamic study in the next. Finally, we will derive a formula for mutual interaction
between two vortex rings.

2.1. Vortex model

In the flapping flight vortex model (Rayner 1979; Ellington 1984b) as displayed in
figure 1(a), the vortex system is composed of a wing-linked vortex ring and wake.
Normally, the circulation of the bound vortex has a distribution along the span, so
that the vortex system can be more reasonably represented by the multi-chain model
as displayed in figure 1(b) (Ellington 1984b). The single-chain model displayed in
figure 1(a) and adopted in this paper can be viewed as an average of the multi-chain
model, namely, a single vortex ring is used to represent the vortices in each plane. In
such a way, the wing-linked vortex ring has a constant circulation along the span and
trailing arc, and the radius R0 of the wing plane vortex ring is a proportion of the
wing span R. For an elliptical distribution of circulation along the span, R0 = (π/4)R
(Gerz, Holzäpfel & Darracq 2002) while Rayner (1979) gives R0 = 0.7 ∼ 0.8R. The
specific value of R0/R does not have an influence on the conclusion.

The wing plane vortex ring j =0 is composed of the bound vortex (straight segments
along the wing spans) and trailing vortex (arc shape, see figure 2a) (Lauder 2001;
Traub 2004). The wakes are composed of a series of vortex rings (j = 1, 2, 3, . . .)
previously shed from the wing plane vortex ring (see figure 2b) and larger j refers to
earlier shedding. Each vortex ring has a circulation Γj < 0. Throughout this paper we
will assume a constant Γj (in time).

The trailing arc does not appear as a complete circle. Since we are interested in the
stroke-averaged lift, we will model the trailing arc as an equivalent circle with a half
circulation of the bounding vortex, following Rayner (1979).
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Figure 2. Wing plane vortex ring (a) and vortex ring in the wake (b). The former is
composed of a circular arc of trailing vortex and two segments of bound vortices.

Normally, the circulation Γj is dependent on j . In § 4, we will show that Γj is
dependent of the stroke especially for the initially shed vortex rings, and that after a
large number of strokes, Γj is almost independent of j for the later shed vortex rings.

The single vortex ring model we adopt here is supported by the early experimental
work of Kokshaysky (1979) and Spedding (1986) in bird flight where the wake
structure is reported to be a chain of planar nearly circular discrete small-cored vortex
loops. In recent elaborate particle image velocimetry (PIV) experiment, Altshuler et al.
(2009) obtained further clear evidence for chain of separate vortex loops that are shed
during down and up strokes in the wake of a hovering hummingbird. Due to the
hummingbird morphology and wing kinematics, two vortex rings are produced each
stroke, one per wing. For general insects like hawkmoth, Bomphrey et al. (2006)
found that a single loop is produced by both wings during a stroke in forward flight.
Ramamurti & Sandberg (2007) confirmed the ring-like structure in the wake and
further proposed more detailed vortical structures through numerical simulation. It is
not our intention to go into the intricate details of the vortical structure in the current
paper, and therefore in our vortex model, we only encompass the essential features of
hovering flapping flight according to these experimental and computational results.
The complicated wake patterns, including double-loop configuration in hummingbirds
and bats, the non-planar elliptical shape of the vortex loops and the intricate details
of vorticity field are remained for future investigation.

2.2. Evolution of the vortex rings

When the wings finish a half stroke, the attached or bound vortices on both wings
and of the same magnitude and opposite sense cancel each other as the wings clap.
The two ends of the trailing vortex line meet each other so that an enclosed vortex
ring is formed. Therefore, starting from the first stroke, a vortex ring is added to the
flow field each a half stroke T/2, where T is the stroke period. The vortex pattern
displayed in figure 1 is a view at some instant.

In the following sections the force will be related to the movement of the vortex
rings, so we compute here the evolution of the vortex rings, using the method proposed
by Rayner (1979).

Assume now there are J vortex rings shed in the flow field. According to Rayner
(1979), the vortex ring j (of strength Γj and radius Rj ) induces, at a point z with
a distance rj to the centreline of the ring j and hj above the plane of the ring j , a
velocity of components

urj (z) =
Rjhj

π
[
(rj + Rj )2 + h2

j

]3/2

Γj

e2
rj

(
2 − e2

rj

1 − e2
rj

E(erj ) − 2K(erj )

)
, (2.1a)

uzj (z) =
R2

jΓj

π
[
(rj + Rj )2 + h2

j

]3/2

[
E(erj )

1 − e2
rj

− rj

e2
rj
Rj

(
2 − e2
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1 − e2
rj

E(erj ) − 2K(erj )

)]
, (2.1b)
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where K(e) and E(e) are complete elliptic integrals of first and second kind, with
eccentricity e defined as e2

rj
=(4rjRj )/[(rj + Rj )

2 + h2
j ].

If we normalize the velocity by

Vm = πR0/T (2.2)

and the lengths Rj, rj , hj by R0, then (2.1a) and (2.1b) can be rewritten as

ūrj (z) =
4f R̄j h̄j[

(r̄j + R̄j )2 + h̄2
j

]3/2

Γj

Γ0

1

ē2
rj

(
2 − ē2

rj

1 − ē2
rj

E(ērj ) − 2K(ērj )

)
, (2.3a)

ūzj (z) =
4f R̄2

j[
(r̄j + R̄j )2 + h̄2

j

]3/2

Γj

Γ0

[
E(ērj )

1 − ē2
rj

− rj

ē2
rj
Rj

(
2 − ē2

rj

1 − ē2
rj

E(ērj ) − 2K(ērj )

)]
, (2.3b)

where ē2
rj

= (4r̄j R̄j )/[(r̄j + R̄j )
2 + h̄2

j ] and the over bar denotes the non-dimensional
value. In the above equations,

f = −Γ0T/
(
4π2R2

0

)
(2.4)

is the feathering parameter (Rayner 1979), defined as the square of ratio between
the downwash velocity at the wing plane and the mean wing tip velocity. For typical
insects, Rayner (1979) gives f = 0.005–0.015.

Summing up the induced velocity over all the vortex rings in the flow field gives
the final downward velocity uzi and the contraction velocity uri for the vortex ring i:

uzi =

J∑
j=0

uzj (zi), uri =

J∑
j=0

urj (zi) (2.5)

with the z-axis pointing downwards; positive uzi refers to downwash. The centre
position zi and radius Ri of the vortex ring i is then computed as

dzi/dt = uzi, dRi/dt = uri . (2.6)

Now we will analyse the trajectories of vortex rings based on a Γj independent of
j . For Γj varying with j , we will show in § 4 that the results do not change much.
Equation (2.6) along with (2.1a) and (2.1b) is solved using a forth-order Runge–Kutta
method, with a time step carefully chosen so that further increasing the numerical
accuracy does not affect the results.

Figure 3 displays the shed vortex ring trajectories at different instants when
f =0.005. In figures 3(a) and 3(b), the numbers (such as 1, 2 and 3) represent
ring index j . Larger indices refer to earlier shed vortex rings. We observe that the
vortex rings shed during the early times move in a disordered way, see from figure 3(a)
the trajectory after five half strokes. For the two first shed vortex rings, the rearward
ring is drawn through the centre of the forward ring, and the rings pass back and
forth through one another. Such a process has been discussed by Batchelor (1967) for
two vortex rings.

After a great number of strokes, the previously shed vortex rings have gradually
developed steady induced velocity field beneath the wing disk, so that the motion of
the newly shed vortex ring due to the induced velocity becomes steady and ordered.
It can be seen from figure 3(b) that, after about seven half strokes, the newly shed
vortex rings have already show signs of orderly motion. The vortex rings immediately
beneath the stroke plane arrange in order and their trajectories are no longer helical.
At this moment, the early vortex rings still move disorderly in the near field, however,
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Figure 3. Vortex ring trajectories after they are shed when f = 0.005. (a) Five half strokes,
(b) 10 half strokes, (c) 40 half strokes, (d ) 40 half strokes with only the trajectories of the two
earliest shed vortex rings shown. � indicates vortex ring positions and the numbers indicate
their indices j .

their instability seems to have little impact on the stable distribution of the vortex
rings just beneath the stroke plane.

Figure 3(c) is the vortex ring trajectory after 40 half strokes. This time duration is
long enough for a stable ring distribution to form beneath the stroke plane, so that
this vortex ring distribution can be taken as the stable state case. Vortex rings marked
by � constitute the steady wake shape beneath the wings. The areal contraction ratio
no longer changes with time. This steady portion of vortex wake prolongs as the
flapping motion proceeds. A comparison between figures 3(b) and 3(c) shows that
after 10 half strokes, the paths of the newly shed vortex rings has already resemble
that in a stable wake, indicating that it does not take long for the vortex rings to
form a relatively definite path of downward movement.

Figure 3(d ) focuses on the unstable vortex rings shed in the early stage of flapping.
Take the first and second shed vortex rings (j =40 and 39) as an example. As the
flapping motion proceeds, they move further downwards. After 40 half strokes, they
have already moved far apart from the stroke plane. Although position and radius
of these vortex rings still vary substantially with time, their influence on the flow
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Figure 4. Vortex ring position after 20, 40, 60 half strokes. (a) Whole view,
(b) self-consistency part.

near the stroke plane is gradually weakening. As these two vortex rings move further
downstream, their trajectory get closer to each other, leading to amalgamation as
observed by Maxworthy (1972) for two vortex ring system. The newly shed vortex
rings travel and deform to become the next in the chain, and an additional ring is
added to the wake from the wing disk. This leads to self-consistency as defined by
(Rayner 1979). If we look at the time history of this self-consistent system, a vortex
ring deforms into itself over a single wing cycle. Any member of the family of rings
travels and deforms to become the next in the chain, and a further ring is added on
the wing disk. The assumption of self-consistent system is valid only after a large
number of (half) strokes.

Figure 4 displays the results for f = 0.015, after the wings have experienced 20, 40,
60 half stokes. In the immediate vicinity of the stroke plane, distribution of rings are
basically the same for the three cases of stoke number, indicating that self-consistency
has already established in 20 half strokes. With respect to the case f =0.005, steady
state or self-consistency in the close vicinity of the wing is reached more fast for
f =0.015.

2.3. Mutual induction between vortex rings

In the next sections, we will characterize the force using the combination RjΓjukj .
Here ukj is the radial contraction velocity of the j th vortex ring induced by the kth
vortex ring. Assume that the two vortex rings j and k are separated by a distance
hkj , then ukj is given by

ukj =
4f Rkhkj[

(Rk + Rj )2 + h2
kj

]3/2

Γk

Γ0

1

e2
kj

(
2 − e2

kj

1 − e2
kj

E(ekj ) − 2K(ekj )

)
(2.7)

according to (2.1a). Here e2
kj = (4RkRj )/[(Rk + Rj )

2 + h2
kj ].
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For the vortex ring j , the total radial velocity at Rj induced by all the other vortex
rings is given by

uRj
= u0j +

∞∑
k=1,k �=j

ukj . (2.8)

Using (2.7), one can easily prove that the mutual induced velocity of the two vortex
rings satisfies the relation

RkΓkujk + RjΓjukj = 0 (2.9)

so that the following equality holds:

∞∑
j=1

∞∑
k=1,k �=j

RjΓjukj = 0. (2.10)

If the trailing vortex arc is averaged over a stroke, it can be regarded as a vortex ring
of radius R0 but with a half-circulation. For the half-circulation ring it holds

R0Γ0uj0 + 2RjΓju0j = 0. (2.11)

Since the bounding vortex segments will pass any point of the wing plane at two
instants of equal duration but with opposite signs, its inducing effect on the wake,
when stroke-averaged, is negligible and not considered here. If one would study the
unsteadiness inside each stroke, this inducing effect should be considered.

3. Aerodynamic forces linked to the vortex rings
Now we apply the vorticity moment theory proposed by Wu (1981) to build

expressions of aerodynamic forces related to the system of vortex rings.

3.1. Vorticity moment theory

The vorticity moment theory developed by Wu (1981) is applicable to a general
viscous and unsteady flow around accelerating and deformable bodies. Consider an
infinitely large domain which is jointly occupied by the fluid and the solid body.
The coordinate is chosen so that the fluid in the infinity is quiescent. According to
Wu (1981), the instantaneous aerodynamic force F exerted on the immersed body is
related to the vorticity moment by

F = −ρ

2

d

dt

�
Rf

r × ωdR + ρ
d

dt

�
Rs

(v + Ω × r) dR (3.1)

where ρ is the fluid density, v is the velocity vector of the solid, ω is the vorticity, Ω is
the angular velocity of the solid body, r is the position vector in the three-dimensional
space, Rf is the region occupied by the fluid and Rs is the region occupied by the
solid body.

The first term in (3.1), namely

FΩ = −ρ

2

d

dt

�
Rf

r × ωdR (3.2)

is the aerodynamic force exerted on the solid body due to time variation of vorticity
moment. The second term describes the force due to the acceleration or deformation
of the solid body. Only the first term is directly related to the vortex rings considered
in this paper and will be retained in the present study since we disregard the various
additional effects other than the vortex structure.
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Figure 5. Illustration of a vortex ring in the three-dimensional space.

Applying the expression (3.2) to the vortex ring system of figure 1 and considering
that FΩ is linear with respect to ω, we obtain

FΩ =
∑

j

FΩj
, (3.3)

where

FΩj
= −ρ

2

d

dt

�
Rfj

r × ωdR (3.4)

is the term related to the j th vortex ring in the flow field.

3.2. Aerodynamic force related to an arbitrary-shaped vortex ring

Now we derive the explicit form of FΩj
due to each vortex ring. Though each vortex

ring lies in a plane for the problem considered in this paper, we will derive the
expression for an arbitrary-shaped vortex ring. Consider an enclosed vortex tube of
arbitrary shape in three-dimensional flow field, whose vorticity concentrates in an
infinitely small core, as illustrated in figure 5. By definition we have�

a
ω · nadA =

�
la

v · ds = Γj , (3.5)

where v is the velocity vector of the fluid, a is the cross-section of the vortex tube, na

is the normal vector of section a and the integral path la is an arbitrarily chosen loop
enclosing the core region of the vortex ring.

Rewriting (3.4) here as

FΩj
= −ρ

2

d

dt

�
lj

r ×
(�

a
ωdA

)
dl

and using (3.5), we obtain

FΩj
= −ρ

2

d

dt

(
Γj

�
lj

r × dl
)

. (3.6)

The projection of FΩj
onto the direction n is thus

FΩj
· n = −ρ

d

dt
(ΓjAj n

), (3.7)
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where Aj n
=

�
dAj · n =

�
lj

r × dl · n is the projection of the area enclosed by the

vortex ring j along the direction n. Here, n can be any direction in which we want
to analyse the force component (see figure 5). Since we have assumed a non-decaying
circulation, we can rewrite (3.7) as

FΩj
· n = −ρΓj

dAj n

dt
. (3.8)

Hence it is the contraction of the vortex ring in a plane that contributes to the force
normal to that plane.

For planar vortex rings as shown in figure 2, area contraction induces a downward
force and expansion leads to an upward force (we have adopted the sign convention
such that Γj < 0). This important conclusion will be useful for identifying the role of
wing plane vortex ring and vortex rings in the wake. For the vortex rings lying in a
plane as considered in the present model, if we take n to be the plane normal vector
pointing upwards (see figure 2), we have Aj n

= Aj where Aj is the area enclosed by
the vortex ring, and

FΩj
· n = −ρΓj

dAj

dt
. (3.9)

4. Lift forces due to various vortex rings and time history
of the stroke-averaged lift

In this section we will decompose the influence of the vortices on the lift into
various sources and study the (stroke-averaged) time evolution of the force starting
from the first stroke.

4.1. Lift forces due to wing-linked vortex ring and wakes

Using (3.9) for each vortex ring j as displayed in figure 1 and inserting this expression
into (3.3), we obtain

FΩ · n = −ρ
∑

j

Γj

dAj

dt
, (4.1)

which, when using Aj = πR2
j for j � 1, can be written as

FΩ · n = −ρΓ0

dA0

dt
− 2πρ

∑
j�1

ΓjRjuRj . (4.2)

The area variation for the wing-linked vortex ring would be dA0/dt = 2πR2
0/T if it

were only due to the sweeping of the wings. However, the vortex rings in the wake
also induce an inward velocity for the trailing vortex, which reduces the area at a rate
πR0uR0 (uR0 < 0), where we have assumed a complete circle for the trailing vortex,
but with a half circulation or half-time duration, so that

Γ0

dA0

dt
=

2πΓ0R
2
0

T
+ πΓ0R0uR0. (4.3)

Inserting the above equation into (4.2) yields

FΩ · n = FB + FT + FW, (4.4)

where

FB = −2πρΓ0R
2
0

T
(4.5)
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is due to the bound vortex,

FT = −πρΓ0R0uR0, (4.6)

is due to the contraction of the trailing vortex induced by the wake, and

FW = −2πρ
∑
j�1

ΓjRjuRj (4.7)

is due to the wake vortex ring motion resulting from their mutual induction and the
induction of the wing-linked vortex.

With Vm defined by (2.2), we can rewrite (4.5) as

FB

R0

= −2ρVmΓ0.

Thus we recover the conclusion that ‘the bound vortex contributes to lift following
the Kutta–Joukowski mechanism’.

Since the inducing effect makes the trailing vortex to contract, from (4.6) we
conclude that ‘the inducing effect of the wake on the trailing arc reduces the lift’, that
is FT < 0.

Now consider FW defined by (4.7). Using (2.8) and (2.10), we obtain

∑
j�1

ΓjRjuRj =

∞∑
j=1

ΓjRju0j +

∞∑
j=1

∞∑
k=1,k �=j

ΓjRjukj =

∞∑
j=1

ΓjRju0j ,

so that the expression (4.7) reduces to

FW = −2πρ

∞∑
j=1

ΓjRju0j .

When further using (2.11), we obtain

FW = πρΓ0R0uR0. (4.8)

Since uR0 < 0 and Γ0 < 0, we conclude that ‘the induction on the vortex rings in the
wake enhances the lift’, that is FW > 0. We must point out that although uR0 appears
in (4.8), FW is due to the over all areal variation of the wake vortex rings rather
than the trailing arc which has a contracting velocity of uR0. We have known that
the contraction of a single vortex ring results in negative lift. The fact that FW > 0
indicates that there must exist a number of vortex rings that expand in the wake.

Actually, in a series of vortex rings, some are contracting while others are expanding.
Now we consider the influence of different parts of wake on the lift force when a
self-consistent state, for which Γj = Γ , is formed in the wake. Firstly, we consider
the self-consistent part which is immediately beneath the wing plane. Integrating (3.2)
over a half stroke, we obtain the averaged force due to the j th vortex ring

Fw−selfj
= − 2

T

� t0+T/2

t0

ρΓ
dAj

dt
dtn = −2ρΓ

T
(Aj|t0+T/2 − Aj|t0 )n.

Under the self-consistency assumption, we have Aj |t0+T/2 = Aj+1|t0 , so that the total
force due to vortex rings in the self-consistent part of the wake is given by

Fw−self = −2ρΓ
∑

j

Aj|t0+T/2 − Aj|t0
T

n =
2ρΓ

T
(A1|t0 − A∞|t0+T/2)n. (4.9)
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Hence, only the areas of the uppermost and the lowermost rings are left in (4.9). In
a steady wake, the latter is the area of the ring at the end of the self-consistent part.
Denote the area contraction ratio by λ= A∞/A1, which is normally less than 1, we
can rewrite (4.9) as

Fw−self =
2ρΓ A1

T
(1 − λ)n. (4.10)

Hence, Fw−self < 0 which indicates that the vortex rings close to the wing plane reduce
lift.

Although the rings contract immediately after they are shed due to the combined
induction of the wing-linked vortex ring and the other vortex rings in the wake,
most of them will finally expand after several strokes when they have gone beyond
the self-consistent part. It can be observed from figure 4 that the early shed vortex
rings below the self-consistent part generally show greater radius than that of the
wing-linked ring and rings in the self-consistent part. So the expansion of this part
of wake contribute to the lift. Therefore, the overall motion of the wake vortex rings
can still lead to lift increasing, that is FW > 0.

Comparing (4.6) with (4.8), we see that ‘the force due to the areal contraction of
the trailing arc cancels that due to the overall areal expansion of the vortex rings in
the wake’, so that it holds

FW + FT = 0. (4.11)

4.2. Time history of the aerodynamic forces

The aerodynamic force during the initial stage of flapping flight has been studied
experimentally by Birch & Dickinson (2001), where it has been shown that lift force
experiences a decreasing and increasing process. Here we compute the force for a
finite number of vortex rings by

FC(t) = −ρ

J∑
j=0

Γj

dAj

dt
n. (4.12)

Similarly as in (4.4), FC(t) can be decomposed as

FC(t) = FB(t) + FT (t) + FW (t), (4.13)

where

FB(t) = −2πρΓ0(t)R
2
0

T
(4.14)

is due to the bound vortex,

FT (t) = −πρΓ0(t)R0uR0(t) (4.15)

is due to the contraction of the trailing vortex induced by the wake, and

FW (t) = −2πρ

J∑
j=1

ΓjRjuRj (t) (4.16)

is due to the wake.
When (2.6) along with (2.1a) and (2.1b) is solved, the new position and radius for

each vortex ring are introduced into (4.14), (4.15) and (4.16) to obtain the forces,
averaged over each half stroke. The absolute value for each force is not considered
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in this paper. Only the relative values defined by

FB(t)

FB(0)
=

Γ0(t)

Γ0(0)
,

FW (t)

FB(0)
=

T

R2
0

J∑
j=1

Γj

Γ0(0)
RjuRj (t) = π

J∑
j=1

Γj

Γ0(0)
R̄j ūRj (t),

FT (t)

FB(0)
=

T

2R2
0

Γ0(t)

Γ0(0)
R0uR0(t) =

π

2

Γ0(t)

Γ0(0)
R̄0ūR0(t)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.17)

are considered. Here t =0 means the first half stroke. For a given f , the computation
of the trajectories of the vortex rings gives Rj and uRj and their normalized values
R̄j and ūRj .

The variation of Γ0(t), under the present purpose, is due to the downwash velocity
induced by the wake. The induced velocity field in the vicinity of the wings has
been studied by Sane (2006), who developed a theoretical model to determine the
circulation profile along the wing span when the downwash is taken into consideration.
The downwash at wing position r in Sane (2006) is induced by the bound vortex
located at wing positions other than r . This induced velocity is built ever since the
first half stroke, so that it should contribute the same amount in Γ0(0) and Γ0(t).
The difference between Γ0(0) and Γ0(t) in the present paper originates from the
downwash induced by the previously shed vortex rings in the wake, which has not
been mentioned by Sane (2006). The term downwash in the following part, unless
otherwise specified, refers to wake-induced downwash velocity.

Now we derive the formula for Γ0(t)/Γ0(0). The circulation on the wing Γ0 is

calculated by Γ0 =
� R

0
γ0(r)dr , where γ0 is the sectional circulation. Using the Prandtl

lifting line theory (Prandtl & Tietjens 1957), the sectional circulation at any spanwise
position, for an angle of attack α, is related to the sectional lift coefficient cl(α) by

γ0(r) =
1

2
u(r)cl(α)c(r), (4.18)

where u(r) = 2Vmr/R0 is the local free stream velocity and c(r) is the local chord
length. In the later calculation, we will take c(r) = 3.2c̄(r/R)0.75(1 − r/R)0.5 (Ellington
1984a), which corresponds to the wing tested by Birch & Dickinson (2001), c̄ is
the mean chord length and R0 is related to R by R0 = 0.8R (Rayner 1979). For
the sectional lift coefficient, we use the classical formula cl(α) = 2π sin(α) (Anderson
1991), since we only consider inviscid model in this paper. The effective angle of
attack α = α(r, t) is a local one, which is related to the mean effective angle of attack
in the first stroke α0 (geometrical angle of attack subtracted by downwash due to the
trailing arc) and wake induced velocity uiw(r, t) by α(r, t) = α0 − �αiw(r, t) , where

�αiw =
uiw(r, t)

u(r)
=

ūiw(r, t)R0

2r

is the reduction in angle of attack due to wake and ūiw(r, t) =
∑J

j=1 ūzj , with ūzj given
by (2.3b), is the induced velocity due to wake. Hence, we have

α(r, t) = α0 − ūiw(r, t)R0

2r
. (4.19)

Take sine of (4.19) and use cl = 2π sinα, we obtain from (4.18)

γ0(r, t) =
2πVmrc(r)

R0

sin(α0 − �αiw). (4.20)
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Figure 6. Force due to wake and trailing vortex and average induce velocity at wing plane
in 15 half strokes with constant circulation for f = 0.015 (a) and f = 0.005 (b).

In the first half stroke, uiw(r, 0) = 0, so

γ0(r, 0) =
2πVmrc(r)

R0

sinα0. (4.21)

For the late strokes, since �αiw is small, we have

γ0(r, t) =
2πVmrc(r)

R0

(sin α0 − cos α0�αiw). (4.22)

Integrate (4.21) and (4.22) over the span and perform a subtraction, we obtain

Γ0(0) − Γ0(t)

Γ0(0)
= cotα0

� R

0
�αiwc(r)r2dr� R

0
c(r)r2dr

= cot α0

R0

2

� R

0
ūiw(r, t)c(r)rdr� R

0
c(r)r2dr

. (4.23)

If we define the weighted average downwash velocity at the wing plane ūz0
as

ūz0
(t) =

R0

2

� R

0
ūiw(r, t)c(r)rdr� R

0
c(r)r2dr

, (4.24)

we obtain from (4.23)

Γ0(t)

Γ0(0)
= 1 − kūz0

(t), (4.25)

where k = cotα0. The effective angle of attack in the first stroke is 39◦ in the experiment
of Birch & Dickinson (2001), which corresponds to k = 1.23.

Firstly, we assume that all the vortex rings have the same circulation, for which the
computed results for the force components FW (t)/FB(0) and FT (t)/FB(0) and also the
average down wash velocity ūz0

which is related to FB(t)/FB(0) through (4.17) and
(4.25) in the first 15 half strokes for f = 0.015 and 0.005 are shown in figures 6(a) and
6(b), respectively. We observe that these force components vary with time abruptly
during the initial stage of flapping, due to strong interactions between the vortex
rings.

For f =0.015, the induced velocity ūz0 has a peak value which reduces the wing
plane circulation Γ0(t)/Γ0(0) ∼ (1 − kūz0

) to a minimum in the second half stroke.
The induced velocity then gradually drops within three half stokes and reach an
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Figure 7. Force due to wake and trailing vortex and average induce velocity at wing plane
in 15 half strokes with variable circulation when f = 0.015 (a) and f = 0.005 (b).

asymptotic value of 0.076, which means that the lift force recovers and then almost
becomes steady. The steady value of lift force is still less than that of the first half
stroke. The lift force due to wake FW (t)/FB(0) is always positive and has a peak value
of 0.27 at the third half stroke. It then decreases to a value around 0.188 and remains
almost constant after the sixth half stroke. The lift of the trailing arc FT is always
negative and displays a trend opposite to FW . Numerically, we recover FW + FT =0
as predicted by the relation (4.11).

The results for f = 0.005 are shown in figure 6(b), where the downwash velocity
and forces due to trailing arc and the wake are much less than the results for the
case of f = 0.015. The downwash velocity has a maximum of 0.075 in the second
half stroke and then gradually goes down to 0.044 in the following seven to eight
half strokes, indicating that more time is required for the wake to become steady for
lower f .

In the above we have assumed a circulation Γj independent of j . Now we consider
the case of variable circulation, due to the induce velocity. At time t0, we assume
that j − 1 vortex rings have been shed into the wake, so that the circulation of the
wing-linked vortex ring Γ0(t0) is reduced, comparing to Γ0(0), by the induction of the
j − 1 rings in the wake. Γ0(t0) can be determined using (4.24) and (4.25). After this
j th ring is shed into the wake, its circulation remains constant as it moves in the
wake. Hence Γj constantly equals Γ0(t0), which is independent of time, but dependent
on j . In this way, circulation of each vortex ring Γj in the wake is determined in turn
before shedding. The results of variable circulation, as displayed in figure 7, are very
close to those obtained for constant circulation. The magnitudes of both the peak and
steady value of FW and FT have slightly decreased, owning to a reduced circulation
of the wake vortex rings. For instance, the peak for FW is 0.227, comparing to 0.27
for constant circulation. The relation (4.11) still holds in the variable circulation case.

Birch & Dickinson (2001) measured the time evolution of the stroke averaged
lift force for a dynamically scaled single model wing of a drosophila. The averaged
forces are given for each downstroke, that is first, third, fifth and seventh half stroke.
Their experimental condition corresponds to f = 0.0137 and k = 1.23. In figure 8, we
display the computed results of FB(t)/FB(0) for various f , when k = 1.23, including
f =0.0137 for drosophila. The normalized value of the experimental result of Birch
& Dickinson (2001) is also displayed. We observe that the computed results follow
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Figure 8. Lift force as a function of time for various f when k = 1.23. Symbol � represents
the experimental results of Birch & Dickinson (2001).

very well with the experimental observation, though a single wing has been used by
Birch & Dickinson (2001). Notably, there is a negative peak at the second (third
for the experiment since only the downstroke force is measured) half stroke, and the
asymptotic value of FB(t)/FB(0) at steady state is 0.91 by computation, comparing to
0.92 measured by Birch & Dickinson (2001).

4.3. Negative peak of the lift force and their relation to the vortex movement

Both the experiment of Birch & Dickinson (2001) and our computed results predict
a negative peak of lift force at the second half stroke. Now we display the time
history of the vortex movement to examine the reason to have such a negative peak.
Figure 9(a–d ) display wake vortex ring trajectories from two to five half strokes in
the meridional plane, with the index number indicating j defined in figure 1. The
symbols � represent vortex ring positions after each stroke. The grey lines are the
constant lines for the average downwash velocity at the wing plane induced by a
vortex ring of radius r and at a distance z below the wing plane. As a vortex ring
travels downwards, its induced velocity at the wing plane drops rapidly.

As is seen in figure 9(a), during the second half stroke, the only vortex ring in the
wake lies within the close vicinity of the wing plane over the full half stroke and its
induced velocity ūz0

is as large as 0.12 at the end of the second half stroke.
In the third half stroke as displayed in figure 9b), two vortex rings coexist in the

wake. Due to the downwash flow field already established by the first shed vortex
ring and the wing-linked one, both vortex rings move very fast during the early stage
of the third stroke. Then, due to their mutual induction, the trajectories of these two
vortex rings round one about the other, reaching a position near z ∼ 0.4R0 at the
end of this half stroke. The two vortex rings induce a downwash velocity around
0.06 + 0.045 = 0.105, a value slightly smaller than at the second half stroke, meaning
that the lift starts to recover.

In the fourth half stroke (figure 9c), the previously shed vortex rings (vortex ring
2 and 3) still lie outside the tube defined by r � R0, so that the newly shed vortex
j = 1 undergoes a very large downwards velocity. At the end of the fourth half stroke,
the vortex ring 1 is at the position around 0.8R0, with an induced velocity at the
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Figure 9. Vortex ring trajectories superimposed on the constant lines of downwash velocity
ūz0 at the wing plane for f = 0.0137. Symbols � represent wake vortex ring positions at the
end of a half stroke and the numbers indicate ring indices j .

plane close to 0.02. The early two vortex rings lie at positions with a total inducing
velocity (at wing plane) about 0.04+0.035 =0.075. Hence, the total downwash velocity
induced by the three vortex rings decreases to 0.095.

Figure 9(d ) displays the trajectories for the fifth half stroke where we have four
shed vortex rings. Due to the mutual inducing effect, the newly shed vortex rings
move downward very fast, so that their effective induction on the wing plane is very
weak. Since the early shed vortex rings are far below the wing plane and the newly
shed vortex rings move along an orderly path after the wake has become steady, the
induced velocity gradually recovers to an asymptotic value.

In summary, the negative peak for the lift at the second half stroke is attributed to
the earliest shed vortex ring which lies in the very close vicinity of the wing plane thus
inducing a very large downwash velocity. After the second half stroke, this earliest
and newly shed vortex rings move fast to a position far below the wing plane so
that the downwash velocity on the wing plane by all the vortex rings in the wake is
smaller than that by the single vortex ring at the second stroke.
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5. Concluding remarks and perspectives
Through applying the vorticity moment theory to the flapping flight vortex

model of Rayner (1979) and Ellington (1984b), we have identified the roles of the
various vortex sources on the stroke-averaged lift forces. The specific conclusions are
summarized below:

(a) In general, the areal contraction or expansion of a vortex ring in the fluid
reduces or enhances the lift. The downwash or upwash velocity induced by a vortex
ring on the wing plane reduces or enhances the lift.

(b) The bound vortex of each wing contributes to the conventional lift following
the Kutta–Joukowski mechanism.

(c) The contraction of the trailing arc, induced by the wake, reduces the lift by an
amount of the order of 20 % of the conventional lift, and the induction on the wake
increases the lift by the same amount, so that the areal contraction or expansion of
vortex rings on the wing plane and in the wake does not have a direct effect on the
lift (though indirectly through changing the amount of downwash velocity).

(d) Most importantly, the wake reduces the lift, by an amount close to 10 % for
a feathering parameter f = 0.0137, through inducing a downwash velocity on the
wing plane. The lift force drops to a minimum at the second half stroke, and then
increases to an asymptotic value about 10 % below the lift at the first half stroke.
This trend follows very well with the experimental observation of Birch & Dickinson
(2001). Decreasing f reduces the value peak (i.e. elevate the negative peak value) and
increases the steady lift.

(e) The existence of the negative peak of lift at the second half stroke is due to the
first shed vortex ring which, just at the second half stroke, lies in the close vicinity
to the wing plane, leading to a peak of the wing plane downwash velocity. After the
second half stroke, this first and newly shed vortex rings move fast to a position far
below the wing plane so that the downwash velocity on the wing plane by all the
vortex rings in the wake is smaller than that by the single vortex ring at the second
stroke.

These conclusions have been drawn based on the ideal vortex model of Rayner
(1979) and Ellington (1984b), dropping out the possible coupling with other effects
such as wing rotation, acceleration, etc. The conclusions seem to be useful for
identifying the relative importance of vortex patterns. Below are topics that deserve
further study.

Shape and configuration of the vortex rings. We have assumed that a single ring
is shed per stroke and that all the vortex rings are circular and lie in a horizontal
plane. According to experimental results, the vortex rings would be non-planar and
non-circular with a more complicated structure. For some species, like bats and
hummingbirds, a double vortex loops model may have to be used.

Unsteady lift force. The unsteadiness of the aerodynamic forces in each stroke is due
to the acceleration, wing rotation, etc. (Sane 2003), the mutual interaction between
the vortex rings and the other unsteady processes would induce further unsteadiness.
As we have noted in § 2.3, the bounding vortex segments will pass any point of the
wing plane at two instants of equal duration but with opposite signs, its inducing
effect on the wake, though negligible when stroke-averaged, may induce unsteadiness
inside each stroke.

Image effects of the wake. The images of the vortex rings in the insect body and
with respect to the wing would change the lift through inducing further downwash
velocity and areal contraction of the real vortex rings. This will be considered in a
forthcoming paper.
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Forward flight and other similar problems. During the forward flight of hawkmoth,
the near-field vortex wake appears to resemble elliptical vortex rings according to
the digital particle image velocimetry (DPIV) experiments (Bomphrey et al. 2006).
This could be studied by using elliptical vortex rings in an incoming flow field. Wing
rotation problems and falling of cards in tumbling motion also involve shedding of
vortex rings (Willmarth, Hawk & Harvey 1964; Hans 1983; Andersen, Pesavento &
Wang 2005) and the roles of these vortex rings can be similarly analysed.

Decay of circulation. Viscous diffusion of the vortex core of each vortex ring may
result in circulation decay due to the vorticity cancellation in the ring centreline.
For a single and free vortex ring the circulation decays as (Fukumoto & Kaplanski
2008) Γ =Γ0(1 − exp(−R0

2/4νt)), where R0 is the radius of the ring, Γ0 is the initial
circulation and ν is the kinematic viscosity of the fluid. For a period T = 0.02 s and
stroke plane radius 10−2 m, typical to insect flight, the above formula shows a decay
of 1 % after 10 half stokes. For a system of vortex rings no study is found for the
decay of circulation. Further study on decaying vortex rings should be considered.
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their comments lead to a better derivation of (4.25). This work has been supported
by the 211 and the 985 Program of Tsinghua University, and partially supported by
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Gerz, T., Holzäpfel, F. & Darracq, D. 2002 Commercial aircraft wake vortices. Prog. Aerosp. Sci.
38, 181–208.

Hans, J. L. 1983 Autorotation. Annu. Rev. Fluid Mech. 15, 123–147.

Kokshaysky, N. V. 1979 Tracing the wake of a flying bird. Nature 279, 146–148.

Lauder, G. V. 2001 Flight of the robofly. Nature 412, 688–689.

Lehmann, F.-O. 2004 The maechanisms of lift enhancement in insect flight. Naturwissenschaften 91,
101–122.

Lehmann, F.-O. 2008 When wings touch wakes: understanding locomotor force control by wake-
wing interference in insect wings. J. Exp. Biol. 211, 224–233.

Maxworthy, T. 1972 The structure and stability of vortex rings. J. Fluid Mech. 51, 15–32.

Maxworthy, T. 1981 The fluid dynamics of insect flight. Annu. Rev. Fluid Mech. 13, 329–350.

Miller, L. A. & Peskin, C.S. 2005 A computational fluid dynamics of ‘clap and fling’ in the
smallest insects. J. Exp. Biol. 208, 195–212.

Prandtl, L. & Tietjens, O. K. G. 1957 Applied Hydro- and Aeromechanics: Based on Lectures of
L. Prandtl . Dover.

Ramamurti, R. & Sandberg, W. C. 2007 A computational investigation of the three-dimensional
unsteady aerodynamics of drosophila hovering and maneuvering. J. Exp. Biol. 210, 881–896.

Rayner, J. M. V. 1979 A vortex theory of animal flight. Part 1. The vortex wake of a hovering
animal. J. Fluid Mech. 91, 697–730.

Sane, S. P. 2003 The aerodynamics of insect flight. J. Exp. Biol. 206, 4191–4208.

Sane, S. P. 2006 Induced airflow in flying insects. Part I. A theoretical model of the induced flow.
J. Exp. Biol. 209, 32–42.

Sane, S. P. & Dickinson, M. H. 2001 The control of flight force by a flapping wing: lift and drag
production. J. Exp. Biol. 204, 2607–2626.

Sane, S. P. & Dickinson, M. H. 2002 The aerodynamic effects of wing rotation and a revised
quasi-steady model of flapping flight. J. Exp. Biol. 205, 1087–1096.

Spedding, G. R. 1986 The wake of a jackdaw (corvus monedula) in slow flight. J. Exp. Biol. 125,
287–307.

Sun, M. & Tang, J. 2002 Unsteady aerodynamics force generation by a model fruit-fly wing. J. Exp.
Biol. 205, 55–70.

Traub, L. W. 2004 Analysis and estimation of the lift components of hovering insects. J. Aircr. 41,
284–289.

Wang, Z. J. 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183–210.

Weis-Fogh, T. 1973 Quick estimates of flight fitness in hovering animals, including novel mechanisms
for lift production. J. Exp. Biol. 59, 169–230.

Willmarth, W. W., Hawk, N. E. & Harvey, R. L. 1964 Steady and unsteady motions and wakes
of freely falling disks. Phys. Fluids 7, 197–208.

Wu, J. C. 1981 Theory for aerodynamic force and moment in viscous flows. AIAA J. 19, 432–441.


